
0'

,;. A PREPROCESSOR FOR A Iq,_-TIME DIGITAL COMPUTER

-,- Richard Lee Bulle

q B.S. Phys. University of Tulsa_ 1963

£.

0r_.?_ A Thesis Submitted to the Faculty of
,-:,u_v School of Engineering and Applied Science

of the George Washington University in Partial Satisfaction

of the Requirements for the Degree of Master of Science

$.

February 1971

:,, Thesis directed by %

':?_ James Dean Harris, Ph.D.

"i_i" Professions _ Lecturer in Engineering
g, h

' '_":' U (NASA CR OR rMX C}R AD NUMBER} (CATEGORY) _ ,_ OC- _ _gl,_

1971011830

b

?
- 4,

%

k,: ""

_. ABSTRACT _

a,; _

, One of the major functions of the National Aeronautics and Space _i_;,_

_' Administration'sLangley Research Center Computer Complex is to provide _:*

,c computational support for real-tlme flight investigations. For pur- i
;i
_ poses of efficiency, several real-tlme application programs operate _

i_ :__,
concurrently In a single Control Data Corporation 6000 series computer. _

To perform "man in the loop" digital simulation requires that the _J_

_ computer operates as part of a closed loop, time critical system where _

_ precise problem solution rates must be guaranteed in order to maintain j

_:: the integrity of t':esolution. _%.

For ease of operation and programing, a real-t_me digital simula- *_

, tion supervisor (supervisor)was written to interface between a Fortran "_

simulationprogram and the real-time system. It provides all the _

real-time input/output control, timing,and synchronization,communica- i_

_ tion, control and other system functions unique to real-time operations. "_

4 To maintain the flexibility and computational speed needed in real-time _

_ simulation, supervisorwas written as a series of interdependent

_:" subroutines that aye loaded with each real-time program. 'Fnisprovides

., the programer the option of using only those features of the system :_

,_}_ that he needs. In addition to mApervisor,there are two other subrou-

_ tines that are used by most simulationprograms. They provide integra- :

tion and the capability of displaying, changing and recording on a

_!: typewriter the value of problem variables.

_a'),

.i

1971011830-002

_ The objective of this project was to develop a real-time digital _• :T

._ preprocessor (preprocessor) that would minimize the programlng involved -:_,

j_,._ in writing a real-time simulation by providing a meta language to Fortran. _

* The preprocessor would parse this meta language and develop a real-time :2

._ Fortran pro_'am. This would allow the programer to communicate to the ,

preprocessor his real-tlme requirements in a unified manner and place -

_', the burden on the preprocessor to write all the subroutine calls neces- ,)

_- sary for real time. _;;

_ A brief description of the software and hardware necessary to :_:

% support digital simulation is presented. The present method of writing ._.

; a real-time program and a new method using the preprocessor are compared. "

The Syntax, Semantics and Pragmatlcs of the preprocessor's language are -
/

. defined and discussed. The implementation of the preprocessor is discussed %

_, and in the appendixes the complete syntax, a flow chart of a major sub- _'

_. routine and sample input and outl_t programs are included. _"

_.,-.
J,

- ,_

-g

i,_,

,g
Q

, ili

,t

1971011830-003

P

¢

_ TABLE OF CONTENTS

7_ Page _

ACKNOWLEDGMENTS

: LIST OF FIGURES vl _

•_ LIST OF SYMBOLS vii

_f Chapter _-"
1

:':" 7
__" II REAL TIME COMPUTING SYSTEM • .. • • } _ -_

:N

_" II1. CHARACTERISTICS OF TEE PREPROCESSOR 15 _
[

. IV. REAL TIME PREPROCESSOR LANGUAGE "_

V. IMFLEMENTATION OF TEE PREPROCESSOR _2 "_o
"A

VI CONCLUSION _5

. APPENDIX A - DESCRIPTION OF THE REAL-TIME DIGITAL SIMULATION '7

47 _%SUPERVISOR

; APPENDIX B - TYPICAL ERROR DIAGNOSTICS 5_ ")

APPENDIXC RTPL SYNTAX 5_ _:'

61 "APPENDIX D - FORTRAN DECLARATIVE SYNTAX %

_ APPENDIX E - SAMPLE _ AND O_ PROGRAMS......... 65 :

._ APPENDIX F PREPROCESSOR SUBROUTINES 69 ,'_

" APPENDIX G - FIDW DIAGRAM OF THE CVAR SUBROUTINE 72 _

"_ BIBLIOGRAPHY 84

F

6;

J;

'_ iv

"I

1

,o

1971011830-004

!

._i_

/

%:

ACKNOWL_ '_

The author wishes to thank Mr. Joseph W. Young of National Aero-

nautics and Space Administration_ Langley Research Center for his
,7

advice and guidance in establishing the guidelines for a real-time S,

preprocessor, and his advice concerning the research that followed.

The author would also like to thank Dr. James O. Harris for his advice .:;

and guidance in preparing this thesis. ,,

°_

4
4

g

\.

,4

V

1971011830-005

..... , _ ..,,-_ T _

_}- LIST OF FIGURES

Page

-.,:4 I. LRC digital computer complex

2 Real time simulation system 6 _
- _.

_ 5. Program control station 7 _

_ 4. Program Control Console

,,,_:;_ 5. Computer organization with real-time digital simulation... Ii _-'

6. Block structures 30 _

7 Symbolic program 7-,

k

a, }i

;L

,$

2;

k

._ ,_h

V

f" , ,

J

N
-_ vi

1971011830-006

!

Z'_" u

LIST OF S-'Y'MBOIS
•_;_ _

:_ ADC Analog to Digital Converter ?,:
"_ _
& ADCON Analog to Digital Controller !_,,]

"_. ADDIS Analog to Digital and Discrete Input System . .:o

-_':;_ BNF Backus Naur Form _,

,<2 CDC Control Data Corporation ,_

'y

._._ CRT Cathod Ray Tube ,,,

"'_ DAC Digital to Analog Converter 7!

_ DACON Digital to Analog Controller

_f DADOS Digital to Analog and Discrete Output System _;;

IC Initial Condition .,;

LRC Langley Research Center

-_ RCT Requested Computer Time, also called Maximum
;i Computer Time _.

... RTEL Real-Time Preprocessor Language =

_: RTSS Re_l-Time Simulation System

_,, SKED Real-Time Scheduler j'
3

, 7,

1

C

1971011830-007

CHAPTER I

'-_' INTROUJCTION

r One of the major functions of the National Aeronautics and Space

_ Administration's Langley Research Center Computer Complex is to provide

J computational support for real-time flight investigations. For Noses

of efficiency, several real-time application programs operate con-

" currently in a single Control Data Corporation 6000 series computer.

To perform "man in the loop" digital simulationrequires that the

•_ computer operates as part of a closed loop, time critical system where

_. precise problem ,_olutionrates must be guaranteed in order to maintain

the integrity of the solution.

For ease of operation and programing, a real-tlme digital simula-

tion supervisor (supervisor)was written to interface between a Fortran

simulationprogram and the real-time system. It provides all the real-

J time input/output control, timing synchronization,communication,

_ control and other system functions unique to real-time operations. To

i_ maintain th_ flexibility and computational speed needed in real-time

_ simulation, supervisor was written as a series of interdependent sub-

?_" routines that are loaded with each real-time program. This provides the

_: programer the option of using only those f_tures of the system that he

_ needs. In addition to supervisor, there are two other subroutines

,:_. that are used by most simulation programs. They provide integration

s_i and the capability of displaying, changing, and recording on a type-

•: writer the value of problem variables.

k

i

] 97] O]] 830-008

2

The resuJt of thls approach is that a program must contain many

subroutine calls. The bad feature of this is that much of the informa-

tion is repeated in several calls.

The objective of this project was to develop a real-time digital

preprocessor (preprocessor) that would minimize the programing involved

in writing a real-time simulation by providing a meta language to

Fortran. The preprocessor would parse this meta language and develop

a real-time Fortran program. This would allow the programer to

communicate to the preprocessor his real-time requirements in a unified

manner and piece the burden on the preprocessor to write all the sub-

routine calls necessary for real time.

A general description of the hardware and soft_are necessary for

real-time simulation will be presented. The featares of the preprocessor

will be explained and the characteristics of the meta .language described.

A sample progrs_m will be used to convey the saving that the preprocessor

can provide the programer.

I

1971011830-009

/

-_ C_ II

RF_J_-T3ME COMI_UTING SYST_I-" In the winter of 1965, Langley Research Center was operating an

analog computing facility. Most of the problems that were being solvedon these computers consisted of man in the loop simulation problems.

,' The vehicle that was being si_!ated was usually some aircraft that

could be represented by a set of first and second order, nonlinear,

differential equations. BY means of a simulated cockpit connected to

the analog computers, a pilot would "fly" the mathematical model, .The

simulated flights would be recorded on eight channel strip chart

recorders or two axis plotters.

Dur_mg the same winter, it was decided that Langley Research Center

could use digital computers to handle the same type problems. The

influence of the analog computers is evident in the hardware and soft-

ware of the resulting digital computer complex.

System Hardware

The real-time digital complex consists of four Control Data

Corporation 6000 series computers and associated subsystems as shown

in figure I. When the system is in operation, several of these sub-

systems may be actively connected tc one co_ter. The exception to

this is that only one simulation subsystem or data recording subsystem

may be attached to a computer. This means that a real-time simulation

may be processing with batch, interactive CRT system and remote

3

1971011830-010

1971011830-011

5

terminal problems. It is in this _nvironment that the computer system

must guarantee the solutions of the simulations.

To perform digital simul_tion, two special Real-Time Simulation
i

Subsystems (RTSS) are employed to _erform inputting and outputting of

analog and discrete signals and time synchronization. Figure 2 depicts

one such systeln. Each RTSS consists of an Analog-to-Digital and

Discrete Input System (ADDIS), a Digital-to-Analog and Discrete Output

System (DADOS), a real-time clock and interval timer, and several

control stations. The elements of DADOS are a set of digital-to-analog

converters, a set of discrete output channels and a Digital-to-Analog

Controller (DACON). ADDIS is the complement of DADOS with the addition

of differential amplifiers, sample and hold amplifiers and analog

_, multiplexers attached to the inputs of the analog-to-digital con-

_ v_rters Eli.

_ The program control station provides the person, who is operating
°,

a simulation program, the means to interact with the digital computer

to obtain the results desired E23. Each program control station as

shown in flgtu'e 3 consists of a simulation console, a CRT contr ,l

console, and a typewriter for displaying short messages. Both eight

channel strlp recorder and two axis recorders can be connected to the

station for recording purposes.

Figure 4 illustrates the control panel ¢,fthe program control

console. Each panel contains a set of switches which are discrete

inputs to the computer program. These discretes _au be further sub-

divided into function sense switches, mode control switches and

4'

1971011830-012

.re-

7

/

1971011830-015

9

• data entry keys. The function sense switches can be used by the _

programer as logical variables to control and modify the real-time

program... These discretes might be used to switch from one set of

initial conditions to another or to switch the sign on one of the

terms in the equations of motion. The data entry keys are used in

conjunction with the decimal display unit. The keyboard is used to

address problem variables, an_ their values will appear on the display

_J unit. By continued manipulation of the keys and the use of one function

_- on the mode switches, the value of the variable can be changed. The

_ mode control switches include three modes, reset, hold, and operate

_ and several functional operations that are unique to rea3-time slmula- ,_

-_ tion. Some of these functions are retrieval of _eal-time data and

i

zeroing the DAC's and discrete outputs. The modes and fur_etio_s will

be explained in the next chapter. Also on the console, there are _a

analog input devices in the lower right corner of the control panel. 4

These handset potentiometers are connected to ADC input channels and ,_:

:_ can be used to continuously change the value of problem variables. _

_ This continuous changing of a value, sometimes referred to as

twiddling, is most valuable in parameter studies where a value needs

:" to be adjusted and the trend in the solution observed. On the left of _.
.: =i"_.

S control panel are lights that are driven by logical discrete output

_ channels. The light can be _rogramed to indicate the status of certain !_

_ operations or that some event has occurred.

._ The CRT system is being used as an integral part of simulation. ,

_ At present, it is being used to make on-line co_e modification of a ,

1971011830-016

lO

source program, display two axis plots of problem variables, display

and modification of central memory, operating registers and the

instruction counter and the advance of program's solution by one

computer word at a time which may execute up to four computer instruc-

tions. The latter two uses of the CRT system are extremely useful in

debugging a small portion of a program.

Real-Time Control

Figure _ shows part of the internal computer organization which is

employed to support digital simulations. The CDC 6000 series computers

are multiprogramable. This feature is implemented by setting up control

points. Each control point is assigned a starting address and a length.

_' No memory fetches or stores will be executed outside this established

: area and if one is attempted, the program will be aborted. In

figure 5, there are three real-time simulation programs running con-

currently on control points two, three and four, while the rest of the

computer is processing batch programs. Due to the increased demands

on the computer's time while running real-time programs, the monitor

in peripheral processor number zero was not sufficient. An additional

monitor was written and resides in control point zero. Control point

one contains scheduler (SEED) which is the software program that

processes all the requests for timing and simulation resources. Two

other resident programs are ADD and DAD. D/D resides in a dedicated

peripheral processor that is connected to the Digital.to-Analog

Controller (DACON) through a _edicated data channel. DAD is the soft-

ware that implements the data flow. ADD, in a_l_ition to handling the

1971011830-017

ll

ImM m

;_ _ ,,,,I

' _ _ , _ _ * _,_I_,,_ _ • , _

19710118:30-018

/

12

data flow for ADDIS, handles the timing information obtained by scheduler

• and implements +he timing schedule.

The essence of real-time computation consists of a problem receiv-

ing inputs from the outside world at time tl, integratingproblem

variables to t2, and waiting until t2. At t2, the problem transmits

outputs and receives input_. This predicting ahead by integration and

waiting, permits the system to synchronize inputs and outputs to the

real world. The real-time clock and interval timer put out pulses that

'_ cause the input and output data to be transmitted at the precise time.

_ The Real-Time Scheduler
\

A real-time program contains control cards that reflect the pro-

'_ gram's needs for ADC's, DAC's, discretes, problem frame ti_, and

maximum computer time per frame. The problem frame refers to the time

between pulses of the interval timer. The maximum computer time refers
i

to the amount of computer time required to complete one t. - step of

_ the independentvariable. After a real-time program has been compiled

and is executing, a call to real-time digital simulation supervisor

(supervisor)is made. After supervisor performs s_me necessary

functions, the control is transferred to scheduler. The scheduler

determines if the hardware requested, A_O's, DAC's and discretes, is

available. If it is available, the hardware is assigned. Scheduler

develops a timing schedule based on the timing requiremcrts of the

programs currently in real time and the new program being processed.

The scheduler develops this timing schedule by determining a common

i

........•-''.* -...:.._._._.:,..I

1971011830-019

!

_ frame time and simulating the central memory timing algorithm. If :_

_ there is enough time to satisfy the maximum computer time requested by _

the new job, the new schedule will be implemented and the system will _

return control to supervisor and the new problem will be in real time.

The Real-Time Digital Simulation Supervisor

The real-time simulation supervisor, as stated in the introduction,

is a set of subroutines that perform special functions for a real-time _'

program. These functions are: _

1. Real-time system initialization. _.

2. Real-tlme timing control. ._

5. Real-time central memory input/output control. ;_

4. Control after time synchronizationwas lost. i:

5. Mode control. ._

6. Storage and retrieval of real-time data. ,
#h

7. Print output control.
J

J

8. Error recovery and diagnostics. _\
j,

9. Compatibility with batch Jobs. __..

A further explanation of these features can be found in appendix A. _S

iv
Integration Subroutine

Another aspect of real-tlme simulation that differs from the needs '/

of batch processing is integration E_. In batch processing, the ;

integration algorithms contain additional feat-_resto drive the rounding

error to the lower part of the computer word and usually provides _ae

estimate of the truncation error. For the majority of _imulatlo_, •

,, .,_ ",,.,:("_' -._, ,- .,,,,.. _'

1971011830-020

13

frame time and simulating the central memory timing algorithm. If

there is enough time to satisfy the maximum computer time requested by

the new Job, the new schedule will be implemented and the system will

return control to supervisor and the new problem will be in real time.

The Real-Time Digital Simulation Supervisor

The real-time simulation supervisor, as stated in the introduction,

is a set of subroutines that perform special functions for a real-time

l program. These functions are:

7: i. Real-time system initialization.

2. Real-tlme timing control.

::- 3. Real-time central memory input/output control.

; 4. Control after time synchronization was lost.

%.

5. Mode control _

'_ 6. Storage and retrieval of real-time data.

% 7. Print output control.

_: 8. Error recovery and diagnostics. _
_j

_ 9. Compatibility with batch Jobs. _

A further explanation of these features can be found in appendix A.

;g¢

Integration Subroutine i_o

Another aspect of real-time simulation that differs from the needs _j_

of batch processing is integration E43. In batch processing, the _

integration algorithms contain additional features to drive the rounding

error to the lower part of the computer word and usually provides some

estimate of the truncation error. For the majority of simulations,

%1

1971011830-021

_ the data is usually accurate to only a few places. Therefore, the four&

_ integration algorithm were written for real-time programs. These

_ algorithms do not have an estimate of truncation error, only the basic

_ integration formtu!aswere pr _gramed. This approach was taken to

.._ minimize the computer time and it was left up to the programer to

_ insure the accuracy of his solutions. The name of the subroutine is

IGRATE1 and it will be discussed later.

g

1971011830-022

/

t_

ii!_ C_ III

_i- CHAEACT_ISTICSOF T_EPREPROCESSOR

:_ Before the preprocessor can be discussed, the present method of

_ writing a real-tlme program is presented. The new method of using the

_' preprocessor is discussed followed by a description of the features of

<_ the preprocessor.

%
, Present Method of Preparing a Real-Time Program
r

_ As Langley Research Center's real-time facility was becoming

:2 established, some variables received a Fortran name that became

_:, accepted and used by most people. An example of this is DAC's. DAC

is the Fortran name of an array whose values are outputed to the real

_ world through the dlgital-to-analog converters. As the real-time

programs were written, the similarities among the Jobs were noticed.
1

To ease the programing burden, sets of Fortran cards were prepunched

;, and made available to all real-time programers. These sets of cards

_ contained many of the calls to supervisor that were necessary, but for

,,_ some variables a Fortran name had to be assumed. The assumed Fortran

_' variable name was usually a reasonable abbreviation of the complete
-,_
?

_: name. This means that a programer can write a real-time program

._ leaving out parts of the real-time structure and using the supplied

, cards to complete the 1_o_. Since these c_'_ls are in the l_o_rs

: deck, he can change any of the assumed Fortran names to a name more

:_ pleasing. For example, a programer may prefer "TIME" instead of "T"

to represent time, the independent variable in the integration formula.

1971011830-023

16

New Method

In lieu of obtaining a set of prepunched Fortran cards, a programer

can write his real-time program without any real-time subroutine ca_!s

by using the real-tlme preprocessor's _neta language, i_L. The pro-

gramer can specify his real-time requirements in a :]ear, tmiform, and

succinct manner. Some real-time programs may require the use of some

additional real-time subroutine calls because of some special need.

Some of the real-tlme structure and subroutine calls that the

preprocessor generates are absolutely necessary for a program to run in _!

real time, and some of the other structures a:_lcalls are options of

the programer. The philosophy of the preprocessor is to generate the

necessary structures and calls everytime the preprocessor is used and i

to generate the other structures and calls only if certain constructs

are present in the input program. .Theprcl-rocessor makes use of

default words and conditions. The preprocessor _._ a symboS table cf

variables that it needs to genes'atethe Fortran code. Some of the

constructs in RTFL determine the Fortran symbol to be useC_as certain

variables. If these constructs are missing, then the preprocessor

uses the default words. DAC is the Fortran default word for digital-

to-analog converters. Certain conditions are defaulted if the corres-

ponding constructs are missing. These default words ana condition's

should not be confused with items the preprocessor considers necesse_y.

For example, integration is an option that the programer mu_t _efine

by a particular constr_ct in RTPL. If an integration construct is

present and if the independent variable and the magnitude of the _tep,

1971011830-024

17

that the independent variable is incremented, are not defined by two

o _r constructs, then the preprocessor will use the Fortran default

_-ariablename, "T", as the independent variable and "32/1024" as the

step size.

Features of the Preprocessor

The preprocessor performs four tasks for the programer:

1. Parsing Fortran declaratives statements.

_ 2. Interfacing with supervisor and other real-time subroutines.

_ 3- Macro generation.

=_ 4. Error diagnostics.

_- Since RTPL is a meta language to Fortran and the preprocessor

_ output is Foz_cran, the syntax of RTPL constructs is closely related to

; the syntax of Fortran. Therefore, the preprocessor need8 a list of

arrays and lists of variables that are typed real or integer before

the preprocessor can properly parse the RTPL constructs. The pre-

@ processor can obtain the information for the lists from parsing the

declarative statements written in Fortran. The preprocessor does not

need the programer to include any variable in a declarative statement

that wouldn't be needed in a normal Fortran program.

Before the actual interface can be understood, it is im_ _rtaut to

have a clear understanding of what basic interface must be present to

solve ordinary differential equations. To illustrate this, a problem

is posed:

_ Problem- to solve the differential equation,

1971011880-025

/

18

�w2y =F

where

= 0.i, w = 0.9, F _ 9 sin 9t

The initial conditions are

t = 0., 0., O; y---9., 0, 0; y" 0., -i., 0

Obtain time histories and printouts of F, y, and Y.

_t The elements of this problem can be categorized as initialize constants,
..

!- set initial conditions (IC's), calculate derivatives, provide digital to

analog output for recording, integration, save real-time data and modify

IC's. In solving ordinary differential equations there are three phases

_ or modes, setting the integrated variable equal to their IC's (Reset),

•_ integrating the variables (Operate), and maintaining current valves of

j integrated variables (Hold). These modes are present on current large

_' analog computers and were implemented for LRC's digital simulations.

_ In the reset mode, the integrated variables must be set equal to their

./ IC's. Because the IC's must be changed for each run, a call to the

display subroutine is useful. In the operate mode, the derivative

equations must be executed, real-time data saved for later printout,

integration and calculating values for DAC's. The hold mode must not

include the setting of IC's, integration, or data storage. By adding an

eight channel strip recorder to the DAC's, and initializing the constants,

all the requirements of the problem are met.

In order to make the problems more controllable, LRC has included

more code in each mode. There is one group of Fortran code that includes

%
%

%

1971011830-026

I

19

derivative eq_atlons, DAC equations, and a call to display. Each mode

passes through this code. Fcr the above example, the reset mode needs

to set IC's, mud the operate mode needs to save real-time data and inte-

grate in addition to the group of Fortran code. The hold mode can consist

of only the group of code.

The interface with the real-time subroutines consists of the sub-

routine calls and any declarative or flow control that is necessary to

sustain the call. The calling sequence to IGRATE1 contains no argument

llst. The input areas are established by a labeled cozm_n. Also, the

integration algorithms are multlpass. This means that the derivative

equations must be executed with intermediate values of the dependent

variables. The execution is managed by a flow control parameter. In

discussing subroutines, a Fortran statement will be preceded and followed
7

by the high set mark, '. Also, the actual parameter lists will be repre-

sented by 'LIST' regardless of the length of the list. This metals that

'CALL ARCTAN (X, Y, Z)' would be represented by 'CALL ARCTAN (LIST)'.

Interface With Supervisor

The preprocessor is capable of generating 11 subroutine calls to

supervisor and two common statements. These 13 statements can be

classified into four groups: Block control, recorded data management,

communication, and real-time initialization.

Block Control.- 'CALL RESET (LIST) '
'CALL BDLD (LIST) '
'CALL OPERATE (LIST)'
'CALLOPTION
'CALLLOSTIME(LIST)'

4

1971011830-027

!

2O

?

A real-time program can be subdivided into several blocks acccrdlng ._
..r

to different functions Calculation of IC's could be in one block while _

evaluations of derivatives could be in another block. Each block is -:,

preceded by a CONTIICJEcard and followed by a _, and both of these &

statementsmust have a statement number. Then by passing these statement _numbers to the supervisor, the supervisor can write a Jump to itself in _-_,

the return location and jump to the location of the continue. The block i_ _

is executed and a jump to the supervisor is made This technique is used ":

;j,

to thread the blocks according to the different modes and functions (the _
i°

threading is similar to the way lists are threaded). A call to super- -_
k

visor identifies a mode or functior and the pairs of statement numbers _i,

for each block. These statement numbers indicate which blocks must be

threaded to form the complete code structure for the mode or functions.

The modes have already been explained. Print establishes blocks that _

are used in printing out data that was recorded while the problem was in

operate. The supervisor takes the stored data and returns It to central -!_

memory, a set of data at a time• After a set of data has been restored, };

supervisor transfers control to one of the print blocks and in this block _

the programer has a write statement with a format specified. After the ',,

iwrite, the program transfers control to the supervisor. This restore ,

a.nd print is alternated until all the data is exhausted. Option and

lostime are functions that have only a single block associate_. The

option block is executed when the option made control _rltch is depressed

and the lostlme block is executed when a program exceeds the maximum

1971011830-028

/

_ 21

:j

• compute time specified on the control cards. The contents of these

;_ two blocks are left up to the programer/ •

Recorded Data Management.- 'CALL RTROUTE (LIST)'

2"

'CALL RECORD (LIST) '

Fortran write statements with a format specified use up an exces-

sive amount of computer time when compared to other Fortran statements.

For real-time recording an alternate method was implemented that saves

::,_ the data during real-time computation and writes the saved values with

_" a format specification in a nonreal-time computational mode. While in

_ the operate mode, the valves of the variables to be recorded are copied

frc_ their central memory locations into a buffer. The contents of the
l

buffer is then copied to a special disk file. In the print block and

with the aid of supervisor, the contents of the disk file is restored

to central memory and the program performs writes to a real-tlme file.

The call to RTR_ informs the supervisor of the symbolic Fortran name

for the real-time file• The argument list of READOUT contains the names
,r

_ of all the variables that shall be recorded. The position of Record is
V

q
used to indicate where in the operate mode the saving of data is to be ._

implemented and argument of the call indicates the frequency at which "

the data is to be saved. If the argument were 32 and if the computer

were cycling tl_o_,h the operate mode 32 times per second, then the

, first, 33rd, 69th, etc., passes would be saved and these points would

k

occur every second.

1971011830-029

22

?

Communication. - 'CALL INOUT (LIST) '
_ 'C0MMON/INOUT/LIST'

'

These three Fortran statements provide communication between the
A_

real-time program and supervisor. Inout informs m.._er-,risor of the
(:

,, addresses of the symbolic names and numbers of ADC's and DAC's that the

real-time program needs to be converted. COMMON INOUT is used by super-

visor to locate the central memory locations for discrete inputs s_d out-

puts. C0_40N MASKS establishes the central memory locations for some

masks. Supervisor creates the mask for the real-time program because it

_ uses the discrete words in a packed form. This packed form means that

each bit represents the status of a discrete channel, and one discrete

_ word represents 60 channels. The programer can obtain the status of a

discrete input or set the status of a discrete output by using the

logical operators, "OR" and "AND" with a mask on a discrete word.

Real-Time Initialization.- 'CALL READY'. READY is an entry point

_" to a subroutine that initializes the real-time system. This call causes

-%i. the supervisor to activate the scheduler. When control is returned to

s the real-time program the control point is operating in real-time.

:t

" Interface With Display

?' 'CALL DATABLX (LIST) 'I

['CALL XDSPIAY (LIST) '
_: 'CALL DSPLAY'

_ 'CALL Tr2VAR '

_.r Display is a subroutine with several different entry points that

permits the value of problem variables to be displayed on the display

unit, changed by the ch mge switch (one of the mode control switches)

1971011880-080

I

and recorded by the typewriter. Each entry point of the subroutine is

called by the name of the entry point like the entry point was a separate

subroutine. The DATABLXcall indicates to display the symbolic name and .._

length of arrays that will be displayed. The XDSPLAY call indicates

where the status of the data entry keys can be located. DSPLAY is the

name of the entry point that does the actual displaying aud changing of

variables. The call to the TYPVAR entry point causes messages about the

present and past values of the displayed variable to be typed.

Interface with IGRATEI :_,
j.

'CO_ON/LNTCOMM/LIST' _i:

'CALL IGRATEI' .,._,

IGRATEI is a subroutine that contains four multipass integration "it

algorithms. The labeled common block INTCOMM, contains the names of all

the variables that are necessary for integration. The necessary vari- _

ables are independent variable, dependent variables,derivatives, time /,.

step, integration flow parameter and the number of variables to be _°

integrated. The labeled common block, INTINTR,provides storage for all _o

intermediate valves of the dependent variables. For some integration ._

algorithms, the derivatives are calculated in a separate subroutine

that the integration algorithm can call as often as necessary. For real-

time simulation the derivative equations are embedded in the main program.

The flow control parameter whose default Fortran name is 'INT' is used

to iterate through the derivative equations and a call to IGRATEI until

the algorithm is complete. A flow control flag whose default name is

1971011830-031

24

'FLAG' is used to recalculate the value of the derivatives and DAC's

! prior to the DAC's value being output to the real world. The reason

• that the derivatives and DAC's must be recalculated is that the integra-

tion is predicting to the time when the DAC's are output. Therefore,

these equations must be recalculated with the integrated values corre- i_l

Isponding to the upcoming output time.

Macro Generator

Since Fortran is not a very convenient language for macros, the

¢ effectiveness of the macro generator in the preprocessor is curtailed.

The macros are not recursive. No statement numbers are permitted and

all formal parameters must be preceded and followed by two "$"'s. More

information is contained in the next; chapter.

Error Diagnostics

When a program is being debugged, one of the most important aspects

is the machine to man communication of errors. Some of the typical

? problems with debugging facilities are error messages that aren't clear

or precise in identifying the problem. Most everybody has encountered

a syntax error in a Fortran compiler. Some of these errors are very
/

: difficult to detect. Another problem in some compilers is that there
?

appears to be different levels of compiling, and the later levels are

' not examined until earlier levels are correct. This me_us that several

recompilations must be made to debug a program. The structure of do

loops are not examined by the Fortran compiler at LRC until after all

syntax errors are removed.

1971011830-032

!

2_

If a system is hard to aebug_ then a lot of man-hours will be wasted

due to poor design. The preprocessor contains many error diagnostics,

and every effort has been made to make them precise and clear. Some of

these diagnostics are in appendix B.

1971011830-033

!

_ CHAPTER IV

7r

_ REAL-TIME PREPROCESSOR LANGUAGE

:_ RTPL is a meta language to Fortran; that is, the preprocessor

translates a RTPL statement into tables and files and converts this

•.- information into Fortran statements. To describe the language, three

_ aspects of it will be presented: syntax, semantics and usage. Since

_ these three aspects are dependent on each other,,the order in which they
Y_

are presented is arbitrary. It would be well for the reader tc review

0_ the first aspect after all three aspects have been covered.
-i

2

J
With the growth of so many programing languages, the uses and

advantages of a well defined syntax is generally accepted by people

in the computing field. Since Fortran was designed and implemented

before the importance of syntax was recognized, it and all its later

versions do not have a well defined syntax. The most difficult feature

_ of Fortran that makes it hard to specify a syntax is the quantization

; that is everywhere present in Fortran. This quantization is usually

_ d.ueto implementation sJ_dnot to any specific concept in the Fortran

•_ specifications. On the IBM 7094 a Fortran variable has a maximum

_, length of six characters which filled the word. On the CDC 6000 series

computers a Fortran variable cs_ have up to seven characters and the

_ rest of the computer word is used for systems information. In both of

_ these examples, the quantization was due to implementation.

26

, i!

] 97] O]] 880-084

!

27

There has been some notable work in defining the quantization of

Fortran. "Report on the Algorithmic Language Fortran II" by Rabinowitz

thc syntax of Fortran II in a modified Bacus Naur Form [_.expressed

Rabino_zitz added the meta operator Fl[m,n_
which meant that the

syntactical unit to the left of F1 must appear at least m times

but not more than n times. Meta Language and Syntax Specification"

by Walter H. Burkhardt uses a quantlzation approach and adds level

numbers E6]. Burkhardt uses the two meta operators $ and T to denote

the minimum and maximum number of times the syntactical unit on the

right can be repeated respectively. The level numbers are more useful

in defining the syntax for syntax directed compilers than syntactical

names. Another report, "A Syntax-Directed Fortran Statement Checker"

by Susan S. Hoffberg and Max Goldstein, uses only the meta operator

T [7_. The meta operator indicates the maximum number of times that

the syntactical uni_ to the left of the operator can be repeated.

This report on RTPL uses the BNF meta linguistic symbols with the

additional operator T n. Also_ level numbers have been assigned to each

syntactical unit in the left portion of the definition. The level

numbers make the syntax more usable by people because the definitions

of syntactical units are placed in ascending order for easy reference

by level numbers. The meta-lingulstic symbols and meanings are:

S_mbol Meanin_

:: -- is defined to be

i or

1971011830-035

i

/

28

(no symbol) concatenation ._

?n. zero to n repetitions of (the syntactical _it on the

right)

< > defines a syntactical unit
l

< m,o > level number m an& syntactical name 0

b null syntactical unit 7

The definition of a defaus.ted integer variable is presented below:

< l, nonzero digit > :: = I12131415161T1819

< 2, digit > :: = 01< i, nonzero digit >

< 3, real letter > :: = AIBICIDIEIFIGIHIPIQIRISlT IVlWlEIYIz

< 4, integer letter > :: = IIJIKIT.ININ

< 5, non 0 letter > :: = < 3,real letter >I< 4, integer letter >

: < 6, letter > :: _--< 9, non 0 letter > 0
I

< 7, alphanumeric character > :: = < 6, letter >I< 2, digit >

< 8, default integer variable > :: = < 4, integer letter > _ 6.

< 7, alphanumeric character >

The first statement would read, "A nonzero digit with a level number i

is defined to be a 1 or 2 or 3 or 4 or _ or 6 or 7 or 8 or 9." The

syntax of Fortran declarative statements is presented in appendix D.

If BNF is not familiar, reference 8 contains a very good presentation

of BNF to define AIT_L 60. On pages 4 to 6 in reference 7 there is a

very good discussion of syntactical definitions. The syntactical

defintion of a default variable would be, "A default integer ._mrlable

with a level number 8 is defined to be an integer letter, level

L

1971011830-036

29

number 4, with zero to six repetition of an alphanumeric characterj

level nttmber7."

I

Semantics ,_

'l_ere are three types of RTPL statements that the preprocessor

will parse and store the information in tables. They are block, non- .:]

block, and macro statements. The nonblock and macro statements will be

represented by an operator followed by one or more operands: OPERA__JR

(0PERAND!,OPERAND2). The block statements will be represented by BNF.

Block Statements -_

'BEGIN < block name 2 >'

'DISCONTII_JE< block name 1 >'
'CO._TINUE< block name 1 >'
'END < block name 2 >'

where < block name 1 > :: = RESET !HOLD]OPERATE IPRINT

< block name 2 > :: = < block name 1 >IDECLARATIVE ,IINITIALIZE IOPTION

LOSTIME

A R&_L program consists of a Program name card, a series of blocks

and an End card. The Program name and End cards are valid Fortran

cards. Each block is composed of a beginning block indicator, a string

of Cortran code or RTPL code or both, and an enddng block indicator.

Fach block can be classified into one of three clas,_es. Class 1 contains

uniblock types, class 2 contains multiblock types and class 3 contains

a single, two block type. Figure 6 depicts one type of block from each

class. Each block indicating statement in RTPL consists of a beginning

cr ending _ord followed by a word that names th_ type of block. For

example, 'BFD.INOPTION' indicates that the bl_ck type is OPTION and it

1971011830-037

3o

"U-

CLASS 1 CLASS 2

=- BEGIN DECLARATIVE BEGIN HOLD

. [Fortran and RTPL Fortran and RTPL
" _ code code

END DECLARATIVE DISCONTINUE HOLD
CONTINUEHOLD

For%ran and RTPL]
:_ code

""= DISCONTINUEHOLD
_- CONTINUE HOLD

For%ran and RTPL
_ code

: CLASS 3 END HOLD

2 BEGIN PRINT

- IF d RTPL]= ortran an

i L J
:_ DISCONTINUE PRINT

ort_&n an

CONTINUE PRINT

END PRINT

Figure 6.- Block Structure ;!_
&

g: ::

2e

N

g

"197"101"1830-038

31

is a beginning block indicator. For class 1 blocks, only the words

BEGIN and END can be used as beginning and ending words. For class 2

' blocks, the first block must use BEGIN and DISCONTINUE, the last block

must use CONTINUE, and the intervening blocks, if any, must use

CONTINUE and DISCONTS_JE as beginning and ending block indicators. If

there is only one block of class 2, it will use the block indicators

for class 1. Class 3 blocks, which there are only two, are like the

first and last block of class 2. Another difference is that the two

class 3 blocks can have Fortran code between them. Class 1 consists

of the following types: DECLARATIVE, INTIALIZE, OPTION, LOSTIME.

RESET, HOLD, OPERATE comprise the class 2 blocks. Print is the only

member of class 3. The meaning and usage of these blocks will be

explained later.

Nonblock Statements

There are five types of nonblock statements. They are: integra-

tion, display, recording, conversion equipment and communication. Each

one of these types will be discussed in detail. In the representation

of the RTPL statement the default words are inserted for the sake of

clarity.

Integration

'Tn n VAL(32)'

The symbol, '32', is an integer constant that defines the number.

of 1/1024th of a second that the independent variable will be stepped

1971011830-039

!

during each integration step. To run in real time this integer must

agree with the problem frame time specified on the control cards. A

problem can run two to one fast by setting this operand equal to twice

the number on the control cards.

'SET INTEGRATION (T,H,INT,NEQ, ISCHEM ,DERINT) '

The above Fortran symbols are the names of the variables in the

list of the common labeled 'INTCOMM'. The resulting Fortran statement

would be: 'COMMON/INTCOMM/T,H, INT,NEQ, ISCHEME,DERINT(2,10) _ if there

were i0 variables to be integrated. The symbol, 'T', is the name for

the independent variable, time. The symbol, 'H', is the name of the

step size of the integration. 'INT' is the symbolic name of the flow

control parameter used to iterate the derivative equation for multi-

pass integration. The symbol 'NEQ' is the name of the variable that

contains the number of variables to be integrated. 'ISCSEME' is the

symbolic name of the variable that indicates which integration algorithm

will be used. The symbol 'DERINT' is the name of a two by NEQ array

that contains the values of the integrated variables and their

derivatives.

'INTEGRATION BUm_ (nnm_) '

This statement establishes a symbolic name for _ five by NEQ

array which is used to stare intermediate values of the independent

variables during a time step by the integration algorithm. If there

were i0 variables to be integrated the resulting Fortran statement

would be: 'COMMON/INTINTR/INTERN(5,10) '. The storage area is passed to

the integration algorithm by means of the labeled common.

i

1971011830-040

33

'scream(1)'

The symbol, 'i', is an integer constant or variable that indicates

which integration algorithm will be used.

"_ 'INTEGRATE (OPI,OP2,OP3) '

_ This statement defines the symbol name for the dependent variable,

its derivative and its initial condition. OtNttAl_l is the variable

name, OPERAND2 is the derivative name and OPERAND3 is the name or

value of the initial condition.

3_

7

Display

._: 'CHANGE NAME (TABLE)'
'CHANGE INTEGER NAME (INTEG) '
'CHANGE .LOGIC NAME (LOGIC)'

The symbols, TABLE, INTEG, LOGIC are the names of three arrays

whose value can be displayed s.nd changed by the subrou'_ine I_PL/_.

i Values in TABLE are displayed in a floating point form. Values in ,
T

: INTEG are displayed in a fixed point form. A special floating point

•_- type code is used for displa_lng I_GII_ variable.

' A aE(oP1oi,2 oP199)'
'CHANGE INTEGER (OPI,OP2,... ,0P99)' ,_.>.
!

LOGIC (OP10P2 •• 0P99)'CHANGE , ,. , ::_

Variables that are to be displayed can be equlvalenced to an

element in TABLE, INTEG or LOGIC depending on the type of variable. _
g

If the variables are equivalenced, then the Fortran symbol name can be

used in the real-time program and the position in the arrays can be _'_

used to display and change the Fortran variable. The operands in the

g

1971011830-041

!

.._ above statement are the Fortran s_n_bolnames that are to be equivalenced
_: 2i

. to the elements in the th ee arrays. ,;

'sc (oP)'
_ The symbol, '0P', is an integer constant or variable name which

;J.._- determines how often the decimal display unit is incremented when the

Scan switch on the control panel is depressed. The operand indicates

__ how many problem frames must pass before the element in the display is

._- incremented. If the computer was running at 32 problem frames per

._ second and '0P' was equal to 32, then every second the next element in

°,.,

_ the display arrays would be displayed.

? ' DIS_Y V_ _L_ (V_C_G, l'_'t:'E, _trF, _ 14,14, FSl_, 1_, FS16,16, _L'e.)'
t

, All of the operands except the fifth, seventh and ninth are

Fortran variable names. The fifth, seventh and ninth operands are

small integer constants. 'VARCHNG' is a symbolic representation of a

_ logical flag that is set true by _ whenever the value of a variablemr

---J-. is changed. This flag is used to call TYPVAR which is a subroutine that

types out the past and present value of the variable that was changed.

ITYPE is the name of a variable internal to DSPLAY. IV_ is the

symbolic representation of the array. This five element array contains

information about the present and past values of the variable being
l

changed. 'FSI4', 'FSI_', and 'FSlT' are the symbolic representations

'15' andof three functions associated with the display unit. '14', ,

'16' are small integer constants that indicate which function switch will

,.. activate the three functions respectively. There are two automatic type

_;:i:. functions other than the automatic type out of variables as they are

t

] 97] 0]] 830-042

!

.,Ji'

_, ,j

changed. The first function causes printout of every variable as it _
v_

)_ is displayed. The other function works in conjunction with the scan

f

switch. Every time a new variable is displayed in the scan mode, its

_- value will be recorded by the typewriter. This feature pe.-_mitsa quick _

means of recording a group of variables th_. ordinarily would not need :'_'_.

: to be recorded. The two features are as_ -iatedwith logical variables ,_:

_ FS14 and FSl_ FS16 is associated with o modes ef displaying v_riables .@
T"'"

_ ”FS16 is true, then the display unit _ ._pl_G'svariables stored in i_
_,=a.L- _ime programarrays. If FS16 is false_ then any _riable in th_ _ " _ _,

-_., can be displayed. This form of addressing takes several steps to set _

:/ up the address of the variable to be displayed or changed. /

._ Recording

,RECO (oPl,opt,...,oP6)'

This statement contains the Fortran symbols of the variables and _%
_. __

_ array elements that will be recorded while the real-time program is in ,a
x

a: the Operate mode. -_"

_- 'REAL _ FILE (MF)' ._.,,_
_ 'MF' is the Fortran symbol name of the REAL T]}4EFILE onto which .,_}

the program will write data in the Print blocks. _-

'RECORDn O (SZ)''}2' is an integer constant that determines how often the real-

time variables will be stored. The RECORD entry point of supervisor is _

called every problem frame but data will be saved on every '_2'nd

_,. problem frame, that is, the first, _rd, 6_th passes.

%.

1971011830-043

/

Conversion Equipment

;_ ,A_NA_ (_)'
'DAC NAME(DAC)'

'ADC' and 'DAC' are the Fortran symbol names for analog-to-dlgitsl '_
"V"

and digltal-to-analogconverters.

'ADC (OPl,OP2,0P3)'
'DAC (OPI,0PP,OP3)'

These statements are used to scale ADC's and DAC's. The first

;_ operand is the variable name, For 'ADC', OPERAND2 is a signed bias and

OPERAND3 is a scale factor. For 'DAC', the meaning of the second and :
'L°

_ third operands are reversed. The following two examples of a RTPL state-

ment and the resulting Fortran statement are:

,_ RTPL ADC (AIPHA,-lO0.,.O1)

._ m_ _u,_ - (aDC(1)-lo0.)*.ol _:

RTPL DAC (BETA, SCAI_,+BIAS)

FORm_NDAC(Z)= (BE_A_CALE)+B_S.

'ADC SKIP (OP)'
'DACSKIP (0P)'

: The operand is the integer number of ADC's or DAC's that are to be

skipped. This is necessary because the ADC and DAC statements do not

have an index associated with the statements and the preprocessor

assigns a number each time an ADC or DAC statement is encountered. '

The skip statement provides a means to not use certain ADC's and DAC's. ,_

|

1971011830-044

Communication

'DISCRETES AND MODES (P4_4OTE,IDIS,0DIS,TYPIO,TYPTPE,FLAG) '

This statement defines six Fortran variable names for use in the
l

real-time program. The first tkree operands pertain to the discretes

and mode control. 'IDIS' and 'ODIS' are the discrete input and output

arrays. The supervisor normally obtains the status of the mode control :_

switches by decoding IDIS(1). By calling subroutine MODEREM, supervisor _!

will decode R_4OTE instead of IDIS(1). This leature provides mode con-

trol from a source other than the mode control switches. By calling . ,

MODENOR, the supervisor will return to using IDIS(1). 'TYPIO' is a

four word buffer that supervisor uses to store messages for the type-

writer. 'TYPTPE' is the typewriter's unit number that was requested to

_ be assigned to the real-time program. 'FLAG' is the logical flow para-

meter that is used to recompute the derivative equations and DAC equa-

tions one time after the integration step is complete. -_

Macro Statements i:!_

'BEGIN MACRO < Fortran variable name > (OPI,OP2,... ,OPIO0)' _
'END MACRO < Fortran variable name >' _

'CALL MACRO < Fortran variable name > (OPI,OP2, ...,OPI00)' ,_

The BEGIN statement defines the name of a macro and its formal _

parameters and commences the definition of the named macro. The END

statements terminate the definition of the macro. The CALL MACRO state-

merit causes the macro named to be fetched from the macro definition

file and to be expanded with actual parameters replacing formal ;_

1971011830-045

!

_- 38 _"'

,?

_ parameters. A macro can have up to i00 arguments or as little as 1
none. The macro body will be discussed in the next section. _

Usage ,.._

._... This section will cover the pragmatic aspects of the language. ..
2_2

Card Format

_ The card format consists of an R in column i, columns 7 to 72

T,_-_ are free field and columns 73 to 80 can be used for sequence tags. The (..._

•__ preprocessor never tries to decode columns 2 to 5 and 75 to 80. The _j_,g_'_,_;:_,,. free field from columns 7 to 72 means that an RTPL statement can _,._;'
,_ commence anywhere to _he lef_ of column 6 and to the right of column 73 __

_Ith as many blanks as desired by the programer. If one card is not

sufficient for the RTPL statement, the statement can use up to 19

_ continuation cards. A continuation card consists of an R in column i g

-.. and a nonblank character in column 6. The same free field applies to _

continuation cards. ,._

._. Program Structure ::_

:e An RTPL program must contain a Program name card, a declarative '_

_ block, an initialize block, at least one block for each of the modes and
,-

:: an End card. In addition to the above required structure, a program can ..

.:,! have up to seven blocks of each mode, two Print blocks, an OPTION block ,_",_"_:

:_i_ and a LOSTIME block. The declarative block must contain any Fortran _:._

declaratives that are necess_a-y followed by nonblock or macro definition _.

_i _tatements. Any statements other than a comment will be detected by the '

,_,

}

] 97] O]] 8:30-046

/

L-._J

;?_-

,_-_, preprocessor as an error. A set of macro definition statements consists ;._.
,J

_ of a BEGIN MACRO, a Fortran macro body and an END MACRO° All other :_:;

. blocks consist of valid Fortran statements, and macro call_, and other _

_ block indicators. Figure 7 contains a symbolic real-tlme program. It _,_

_ should be noted that one block of Fortran code is in blocks of all .-,,_.

<:'_: three modes. This is a valid structure. _

:_:: As a general rule there is no partic_ilar order for nonbleck RTPL ,':_

'_- statements. There are some statements that establish arrays and their "a_

•_ position with respect to all other statements of the same type is _

"'- important. CI_NGE,CHANGE Ih_I_EGER,CHANGE LOGIC and RECORD statements

are examples of this. Also ADC, DAC, ADC SKIP an0 DAC SKIP statements)_

,:.._.,. determine their position in the ADC array and DAC array. Integrate also ..__

establishes a specific order for the DERINT array but the order usually

is of no consequence to a programer. ,"-

,,,,,,,,_,

5, The Print blocks are unique because Fortran code is permitted

.- between the two blocks. For convenience, the blocks will be referred 4_

t to as sections. The first section is the code in the first block. This ._
7.>: section is executed once every time the Print switch is turned on. ._he _:_

' _

second section is the code between the two blocks. This section is ._,,'----

"_",,, iterated until all the stored data is exhausted. The third section is i_i

Ii the code in the last block and i";is also executed once. The first 4"

i_' section should contain a write to the REAL TIME FILE which identifies .j"

_, the data in the form of a header. Section 2 should contain a write

,., to the REAL TIME FILE of all the data saved. Section 3 can be used ,

to perform any _ostprint processing. If the programer prefers to _:

1971011830-047

Figure 7.- S_bollc Program

1971011830-048

.2_., 7

have his header appearing with the data, then section 3 may be left .!":_

empty and the writes in section 2 can contain the header and data '_'

, information.. :-Q:_

(.ons_.s ,_ ofAs stated before_ the macro definition statements " _ _ :-/

BEGIN MACRO nszne,Fortran statements, and _ END MACRO name T%e Fortran ::-

statements have all the formal parameters surrounded by a pair of $'s. :,}_

X A

The code cap,notcontain any statement numbers. _ :

ApDe_.dix E contains a sample input program t.hatwas preprocessed. -'--_;

The output program is the contents that was produced in Fine!. It ":-:_i_

should be noted that th_ preprocessor used statement numbers in the _:_,_'_

, 9t5,000 range for +he bl-:k statement numbers. This range of statement ._:-_<_'-

':__ numbers are prohibited from use by the programer. .. _._._

" All errors that the preprocessor detected will be flagged and a].
_: d_agnostic will appear in the error directory. If there are programing "_ _:-

-.: e.-co;_c,the in_'t fife wi]/Lbe p_'inted wit'- a3C _tatements with e_-Tors
c

flagg, i. _ so, the e_Tor directory will be printed. %_ne error directory

will contain a diagnostic for each error encountered.

-.¶

*u

] 97101] 830-049

-4

C_ V _

_DtoLRMENTATION OF TKE PREPROCESSOR __

The preprocessor has four functional units; they are: a Fortran _

parser, a RTPL parser, a Fort;ran generator, era a macro generator. '_/

These functional units are not ceparate algorithms but are intertwined

throughout the preprocessor's code. The Fortran parser decodes Fortran

declaratives and stores the symbols of arrays studreul and integer

variables that were typed for use by the RTPL parse1'. The R_"?L parser

,_ecodes the R__#L statements and stores the information in tables for use

by the Fortran generator. The Fortr_ generazor writes Fortran code on _,.

Temp. a temporary file, as a r_sult of the information stored by the

RTKu parser. The m_cro generator has two phases of operation, macro

definition _Qndmacro expansion. _ne macro definition phase consists

cf writing the macro bc_iy and a macro text consisting of the macro

name and a list o£ formal parameters on t_e macro definition file. The

macro e:_anzion (,ons__ts of locating the macro in the definition file,

replacing formal parameters with ;_.-tualparameters, adjusting the Fortran

code, and writing the expanded macro on Temp.

The preprocessor passes through the input file only one time. The

preprocessor reads a card and inspects it one character at a time. Once

the card image is parsed it will be d'.scarded or written on Temp. After
a

the Fortran End card is detected, the preprocessor copies the contents _,

of the Temp file to Final, inserting the necessary _upervisor calls to "_

establish blocks for the modes and certain functionals. Any remaining _
|,

42 _'
n

1971011830-050

J

43

subroutine will be copied to Final. °After the preprocessor is finished,

-- Final can be compiled and executed as a real-time program. Because _._"

_" continuation of RTPL statements is permitted, the preprocessor, if the

._ syntax is not complete on one input card, will read the next card. The _
T. "-_._

preprocessor tests the n_ card to detemine if it is a valid continu- _;_

ation. If it is a continuation card, the preprocessor will continue to

parse the syntax. If It isn't a continustion or a comment card, then the _

_ previous card has an invalid syntax• The previous card will be flagged

_ _.

_ as invalid and a detailed error message will be entered in the Error -:

Directory. If the card was a comment, the nex_ card will be read and _--_
_° _ I "_

 o,or . -%

The first card of an RTPL program must be a Fortran Program name

_ card If it isn't, the preprocessor will write a diagnostic and try

to decode the flrs_ card as any other card. The input card. is tested
---4

i_ to find out If it is at.RTPL statement, a Fortran comment or another

_ Fortran statement. Comments s_e copied from input to Temp. There are

. several types of Fortran statements. If the macro definition switch is

true, the Input information Is written in the macro definition file.

" If the declarative block switch is true (indicating a declarative

: block is being processed) the string of code will be parsed. If neither

switch is true, the car_ is tested for an End card. If not, the card

image would be written in Temp. If it is, _the end processing mentioned

earlier would be executed. If the card was a R_L statement, the pre-
5_

:. processor tries to parse the string as a block statement. If it isn't,

}'_ it _s parsed _s _ nonblock statement. If the nonblock parsing fal_s, the

t,

] 97] O]] 880-05]

v 44

statement is flagged as an error and a diagnostic is written. If the

nonblock parsing succeeded, a subroutine is called to parse the%

' _ operands. If the block parsing succeeds, then statement numbers are

_: stored and the proper Fortran CONTINUE or RETUEN statement is written.

_' The macro statements are handled as a set of the block statements. If

k_

any NAC'RO BEGINS or ENDS are detected, the macro definition switch is

_- switched true or false respectively. If a CALL MACRO is detected, a

_ subroutine is used to handle the expansion.

Appendix F contains a llst of all _he subroutines that are used by _
_ the main program of the preprocessor.

%

4.1

4

i

¢

1971011830-052

CHAPTER Vl

" -- CONCLUSION
!

;" The objective of this research was to design and implement a

_i computer program that would accept a Fortran program with a few non-

fortran _tatements as input, decode the nonfortran statements, and develop

_i a real-time program. Through the nonfortran statements, the programer

H i would explain his real-time requirements in as simple form as possible.

__ There was to be no infringement on the programer's freedom in program-_ng his problem, yet he should be freed as much as possible from routine
4_

coding and bookkeeping information. .. -_,.-

These objectives were adequately met by the preprocessor. The _
Ci#

operator form of statements is easy to understand and to use. The _
._._-.

supervisor required a block structure for the modes and associated)_

functions. This block structure was easily extended for declaratlves _

and initialization processes and provided good definition of where to _

insert the Fortran code generated by the preprocessor. The macro
capability, defaulted names of variables and diagnostics will save many

,%

hours of programing, coding and debugging of a problem. It also means /
that many system changes can be implemented tt_ough the preprocessor _

and the programer's deck will not be disturbed, v

Since this preprocessor will be used by m_,y people, from time to

_-, time changes will be made to the program to enhance its features and to

meet new needs. At the present, plans are being made to extend the

macro capability and to provide a print package similar to the ones

1971011830-053

m

!

::J.i

46

found in continuous system simulat_nn languages. For the print package,

the variable name and some Hollerith string would be passed tc the ,_

, preprocessor. The Hollerith string would be used as a header and the _

" variable name would be used in a write statement with a fixed format. _

This continual development will keep the preprocessor current of the _

needs of the computing facility.

N

A_

1971011830-054

/

APPENDIX A

I

DESCRIPTION OF THE _-T_E DIGITAL SIMD_TION SUPERVISOR

The follo_ng material is taken _Irectly from reference 3, pages

12 to 17

The supervisor is a set of subroutines integral to each simulation

job. The supervisor performs all real-tlme input/output control,

timing synchronization, communication and control, and other related

functions that are system dependent. This allows the slmul_tion

program to be coded in Fortran with little regard to the computer -

interface with the real-time world.

The real-time digital simulation supervisor must perform the

following functions: ,...._.

A. Real-Time System Initialization

B. Real-Time Timing Control

C. Real-Time Central Memory Inl_At/Output Control

D. Control After Lost Time Synchronization Interrupt

E. Mode Control

F. Real-Time Deta Storage and Retrieval

G. Print Output Control
,\

H. _h'rorRecovery and Diagnostics

I. Batch Job Compatibility

i

1971011830-055

I

A. Real-Tim. System Initialization
J

When a real-time job enters the computer system, the only special |

i_ characteristic that it has is the priority. Once the Job begins to _

execute, it runs like a high priority b&tch job. Through a series of

initializing calls, the simulation applications job communicates cer-

tain real-time data that is required for real-tlme operations. At this

point, the supervisor must communicate to the operating system infor-

mation for execution of the real-time portions of the Job.

•The supervisor must communicate to SKED the addresses where the

;j ADC, DAC, discrete, real-time clock, and other real-time information _ _

for this job reside. The supervisor must construct an interrupt table

i to the real-time monitor. In addition, the supervisor must set up

internal flow control, data areas, and perform other functions nec-

sary to prepare for real-time operation.

B. Real-Time Timing Control

A real-time simulation Job may execute in one of two states. It

may execute in real time, where strict time synchronization is held

' and real-time responses are calculated. It may also execute in non-

real time where time synchronization is not maintained and the Job

executes like any high priority batch Job. A real-time simulation Job

may change readily from _eal time to nonreal time or vice versa. The

supervisor must perform the necessary monitor functions to perform the

transition described. The supervisor must also perform the necessary

system functions to _arantee time synchronization while the Job is

1971011830-056

49 i

operatin_ in real time. The supervisor also computes the maximum CPU 1

: time per frame for programer information. _

C. Real-Time Central Memory Input/Output !

The supervisor controls the transmission and distribution of
!

input/output from the RTSS. ADC's and DAC's are packed four channels i

|
per word and the supervisor provldes the pack/unpack capabilities so

.' that these quantities appear in normal floating point numbers in the

Fortran program. Discretes are packed 60 per word and may be

, unpacked into normal Fortran logical variables if that mode of oper-

| ation is selected,

D. Control After Lost Time Synchronization Interrupt

A simulation job requests of the system two time increments that ,,

are pertinent to real-time execution. The first increment requested

is frame tlme--this is the time between samples a_:ddefines the itera-

tion rate. The second is requested compute time. Since more than one

sirmllation can use a computer, each simulation must have an allotted

time slice in which to compute a response. This time slice is the

" requested compute time (RCT).

, In order to preserve time synchronization' of all real-time Jobs,
f,

;,_ the system guarantees that no Job will be allowed to compute:moreJ

, than its allotted RCT per frame for that Job. When a Job does attempt

, to exceed the RCT, a lost time syncha,onization interru _ is issued by

the rea!-time monitor and the central processor is given to another

1 R,

1971011880-057

vr

70

Job. It is the task of the supervisor to control and coordinate

activity of a simulation after lost time synchronization interrupt

!occurs. A more detailed discussion of lost time execution is given ,

in a later chapter. _,

E. Mode Control

Tha process of real-time digitial simalation requires an inter-

i "
actlve man-machlne congrol capability. By using the mode control

keyboard, a simulation programer is able to control the flow and _!

_ function of his program. This manual control is called mode control

and is interpreted and coordinated by the supervisor. A detailed

description of mode controls and implementation follows in a later
-C

section.

:: F. Real-Time Data Storage and Retrieval

_ During the course of a simulation, it is necessary to store

information about the simulation such as values of state variables,

external disturbances, and event status for later analysis. Because

of real-time simulation timing constraints, Fortran input/output cannot .=

be accomplished during real-time ol0eration. It is also infeasible in

a multiprog_aming system to have extensive storage of data in central

memory. Therefore, it is the task of th_ supervisor to control and

coordinate the storage on disk of data generated during real-time
i

operation, without interfering with the timing and synchronization of

the s_mulation.

1971011830-058

|_

G. Print Output Control j

With the standard batch operating system, information to % -_

printed is routed to the printer only after the job has completed '_

a21 processing and has left the system. The supervisor by special

communication with the operating system, can route information directly

to the line printer upon command _ithout relinquishing the central '_

processor. _lls allows the programer to supplement the analog data

on recording equipment with printed data at his request. ,_

H. Error Recovery and Diagnostics _ - --

'. During the execution of a program, many different errors can _ _

occur. The suI_.rvisormust provide the error recovery and diagnostics !

necessary to maintain the integrity and effectiveness of a real-t_m_. _,_.

sL.._11ationJob. In a batch environment, when an eITor occurs, the Job

aborts. ;rnreal time, because of the large quantity of resources _

I(i.e., computer, A-D conversion equipment, cockpits, etc.) and person-

nel required, it is best to capture the error ard allow the progr.amer

the ch_,nceto fix the program, if possible, and to continue operation.

It is desired that the programer not be required to provide for ell

contingencies, e.g., if the solution goes _mstable, the supervisor

•_ill trap the error, allowing the programer to access his stored data

_md to reset and to begin anew.
i

1971011830-059

b

I

/

52

I. Batch Job Compatability

Real-time digital simulation is expensive in te_ms of machine

' resources and execution time. Therefore, it is undesirable to 7o

computations in real time when it is not necessary, such as during

early coding checkout and purely analytic studies where real-time

input and control is nct needed. An additional requirement of the

supervisor is the capability of operating the simulation job as a _:

real-time Job o_ as a normal batch job with minimum ch_ige necessary

for the program.

_ i"

'

i

1971011830-060

/

AFPENDIX B

TYPICAL ERROR DIAGNOSTICS iI

_..

_ The following error diagnostics are a few of the typical diagnos-
i-

tics that may appear in the Error Directory due to programlng errors.

i
CARD NO. 1 IS THE FIRST CARD AND IT IS NOT A PROGRAM NAME CARD

CARDNO. 2 IS AN 21W/_ID BEGIN CARD

_ CARD NO. 2 IS NOT THE FIRST BEGIN PRINT

CARD NO. 2 IS A CONTINUE HOLD THAT IS NOT PRECEDED BY A DISCONTINUE

CARD NO. 2 IS GREATER THAN THE SIXTH CONTD_/E PRINT

CARD NO. 2 IS GREATER THAN THE 19TH CONTINUATION CARD

CARD NO. 2 HAS AN INVALID MACRO NAME

c,._ ,.."3,.

J CARD NO. 2 HAS AN ARRAY WITH FOUR SUBSCRIPTS

_, CARD NO. 2 CONTAINS 'a variable nsme' FOR TABLE WHICH EXCEEDS ITS SIZE

:_ THE FIFT_ OPERAND ON CARD NO. 2 IS INVALID

_ CARD NO. 2 IS AN INVALID COMMON 8TATEMERT

THE PRINT BLOCKS ARE NOT COMPLETE

i

4

',i

@

-%

1971011830-061

!
/

APP_TDIX C

RTPL SqNTAX

< l, nonzero digit > :: = 11213141516171819

< 2, d_glt > :: = 0 I< l, nonzero digit >

< 3, 1 tt => ::=AIIcIDIIFIGIEIFIQ ISIIUWIWlX IZ

< 4, integer letter > :: = IiJIKILIMIN

< _, non-0 letter > :: = < 3, real letter >I< 4, integer letter >

<6, letter > :: = < 5, non-O letter >I0

< 7, alphanumeric character > :: - < 6, letter >I< 2, digit >

< 8, default integer variable > :: = < 4, integer letter >T6.

< 7, alphantcn,c. >

< 9, octal digit > :: - 011121314151617_

< i0, octal const_t > :: = 0 < 9, O. digit ><9, O. digit >

< 9,0. digit >< 9, O. digit >< 9, O. digit >< 9, O. digit >¢14.

< 9, O. digit >

< ii > :: = < 6, letter >< 7, alphsmum, c. >< 7, alphanum, e. >

< 7, alphanum, c. > < 7, alphanum,c. > < 7, alphanum,c. >

< 12 > :: = < 7, alpl_mntcn,c. > < 6, letter > < 7, alphant_m,c. >

< 7, alphant,n. c. > < 7, alphant,n. c. > < 7, elphan_on,c. >

< 13> :: = < 7, alphant,n. c. >< 7, alphanum, c. ><6, letter >

< 7, alph_t,n, c. > < 7, alphant,n. c. > < 7, alphanm_, c. >

< 14 > :: = < 7, alphanum, c. >< 7, alphanum, c. > < 7, aLiphanum,c. >

< 6, letter > < 7, alphanum, c. > < 7, alphenum, c. >

1971011830-062

55

< 15 > :: = < 7, alphanum, c. > < 7, alph_uum, c. >< 7, alphanum, c. >

< 7, alphanum, c. > < 6, letter > < 7, alphanum, c. >

< 16 > :: = < 7, alphanum, c. >< 7, alphanum, c. > < 7, alphanum, c. >

t < 7, alphanum, c. > < 7, alphanum, c. > < 6, letter >

< 17> ::-< 11>I<_ >I<15>I<l_>k 17>i<16>

< 18 > :: = 0 < 17 >

< 19 > :: = 0_5. < 7, alphanum, c. >

< 20 > :: = < 3, _eal letter >_6. < 7, alphanum, e. >

< 21, default real variable > :: = < 18 >I< 19 >I< 20 >

< 22, integer variable > :: - < 21, d. real vat. >I< 8, d. int. vat. > _.

< 25, real variable > :: = < 8, d. int. var. >I< 21, d. real. vat. >

< 24, variable > :: = < 22, int. var. >I< 23, real vat. >

<_ > ::=o1_.1213141_1_,.
<26> :: =1<25>

< 27, small integer constant > :: = < i, nonzero digit >I< 26 >

<28> :: =1

< 29> :==o111213

< 3o> :: = Oil

{ <31> :: =0

;_ < 32> :: =olzl2131_1.51617
}., '

<33> ::=o

<_> :: =<28><29>< _>< 3l>< _e><3._>
t

< 35 > :: = <2, _isit >t4. < 2, digit >
J,

< 36, subscript constant > :: = < _ >k _5 > ,.<,

1971011830-063

/
o

56

J

57

< 60 > :: = bTm < 2, digit > ._n. < 2, digit > where m + n = 15 i
!

< 61 > :: = < 58 >I< 59 >I< 6o >

<62, sign> ::--+I-

< 63 > :: = < 2, digit > 72. < 2, digit >

< 64> :: = < 62, sign >Ib

<65> :- --<64><63>

< 66, exponent part > :: - < 65 >IE < 65 >

< 67, real constant > ": - < 61 >< 66, exp. part >

< 68 > :: = , < 36, subscript con. >

< 69 > :: = < 36, subscript con. > T2 < 36, subscript con. >

<70>': -(<69>)

< 71, real array > :: = < 23, real var. >I< 23, real vat. >< 70 >

< 72, integer array > :: - < 22, int. vat. >I< 22, int. var. >< 70 >

< 73, array> :: = < 71, real aZT. >I< 72, int. arT. >

< 74, signed real variable > :,.= < 62, sign > < 23, real vat. >

< 7_, signed real constant > :: = < 62, sign > < 67, real con. >

< 76, integer variable or constant > :: = < 22, int. vat. > I

< 57, int. con. >

< 77, real variable or constant > :: - < 23, real vat. >I< 67, real con.>

< 78, variable or array> :: = < 23, real vat. >I< 73, array>

< 79> ::-Bm_Im_

< 80 > :: = < 79 >ICC_T_E IDISC0_

< 81> :::D_X_mTZmI___ Io_ II_s_

<82> :: =<79><81>

<83> :: =<80>PRIBT

I971011830-085

!

58

< 84 > :: = < 80 >RESETI"I. HOLD I'I. OPERATE
f

< 85 > :: = < 80 > HOLD I'i. OPERATE
7

< 86 > :: -< 80 > OPl_k__

< 87, block statements > :: - < 8_ >i< 85 >1< 84 >1< _ >1< 86 >

_ <88> :: -<24, vat. > I,

< 89> ::- < 25,v_. > t99.< 88>Ibt99.< 88>

< 90> ::--cmumE umlc (<89>)

< 91 > :: = , < 24, vsm. >
L

< 92 > :: - < 24, win. >_i00. < 91>

< 93> ::= BEGINMACRO< 24,wr. > (<91>)IBmINMACRO< 24,wr. >

_: < 94 > :: CALL MACRO < 24, vaz. > (< 91>)ICALL MACRO < 24, win. >£

" < 99 > :: --_D MACRO < 24, yam. >

< 96, macro statements > :: =< 93 >I< 9_ >I< 95 >

< 97 > :: --, < 23, real wm. >I,

< 98 > :: - < 23, real wr. >T199. < 97 >Ib?199. < 97 >

<99> ::=_E (<98>)
f

< i00 > :: = , < 22, int. v_r. >I,

< i01 > :: = < 22, irrb_vaz. >_99. < 100YlbT99. < I00 >

< 1o2> ::= CHANGElWa_ (<101>)

<103> :: = , <78, yam. or _TT. >

< 1o4> ::. < 78,v,m.ora_w.>t64. < 103>

,,, < 1o9> ::= mmoRD (<1o4>)
i

_ < 1o6> ::= ADONAME(<23,reaZwr. >)

< 10?> ::. DAO_ (<e3,r,az wr. >)

1971011830-066

59

< llO > :: = CHANGE NAME (< 23, real vat. >)

<lll > :: = REAL TIME FILE (< 24, vat. >)

< 112> ::= _RATI0_ _ (< 24, vat.>)

< ll3 > :" = SCANNER (< 76, int. vat. or con. >)

< 11.4> :: --TIME INT_I_CAL(< 76, int. vat. or con. >)

< ll9 > :: = RECORDING FREQLIENCY(< 76, int. vat. or con. >)

< 116 > :: = < 23, real var. >,< 23, real vat. >,< 77, real vat. or con.>

<117> :: =, <116>

i < 118 > :: = < 116 >I _220. < 117 >

,_ <119> :: = _ (<118>)
¢

< 120 > :: = ADC SKIP (< 57, int. con. >)

< 121 > :: = DAC SKIP (< 97, int. con. >)

< 122 > :: = < 7_, s. real vat. >I< 75, s. real con. > =:

< 123 > :: - ADC (< 23, real var. >,< 122 >, < 77, real var. or con. >)

< 12_ > :: = DAC (< 23, real var. >,< 77, real vat. or con. >,< 122 >)

< 129> ===< 24, > Ib

< 126 > :: = < 27, small int. con. >Ib

< 127 > :: = DISPLAY VARIABLES (< 125 >,< 129 >,< 125 >,< 125 >,< 126 >,

< 125 >,< 126 >,< 125 >,< _6 >,< 1_ >)

< 128 > :: = < 23, real var. >Ib

< 129 > :: = < 22, int. vat. >11_

< 13o > :: = SETI_TEGRATION(< 128 >,< 128 >,< 129 >,< 129 >,< 129 >,

< 125 >) _,_i_,'_:_

< 131 > :: =MODES ARD DISCBETES (< 125 >,< 125 >,< 125 >,< 125 >,

< 125 >,< 125 >)

1971011830-067

/

%

• !
6o i

_ < !32. non,block statements > :" = < 90 >I< 99 >_< 102 >I< 105 >I< 106 >I

_ < i07>i<!08>I<io9>I<110>F 1_ >i<i_ >I<113>l<114>t

•__ < n.5>I<i19>I<120>I<121>}<_3 >i<_4 >I<127>I<130>I<131>

< 153, a formal parameter in the body of a macro > :: = $$ < 24, vat. > $$

_ -
The preprocessor does not parse Fortran statements except Fortran

_j declaratives and formal parameters in the body of a macro _efinition.

_ The syntactical definition of formal parameters is stated above and

appendix D contains the definitions of Fortran declarative

1971011830-068

!

!

APPENDIX D

I

FORTRAN DECLARATIVE SYNTAX
I

The following syntactical definitions are taken from the RTPL

syntax:

< 2, digit >,< 24, var. >, and < 7o >

i< _ > :::co_l__l__m_l_m_l_l__l__

< 202, TYPE NAME > .: = < 2ol >ITYPE < 201 >

< 203, array > :: = < 24, var. >< 70 >

_ < 204 > :: = < 24, vat. >< 203, array> -_

r

_ <205> ::= , <2o4>

< 206, list T> :: = < 204 >T. < 20_ >*

< 207, type statement > :: = < 203, array >< 206, list T >
:,:Y

_ < 208, comuon identifier > :: = < 2, digit >I'6. < 2, digit > I

< 24, vat. >

< _9, co_o__b_1A> :: =bJ//
< 210, common unit A > :: = < 209, common labelA >< 206, list T>

< 211, blank common statement > :: = COMMON < 210, common unit A >
|

T • < 210, common unit A >

< 212., common label B > :: = / < 208, conmaonidentifier > /

< 213, common unit B > :: = < 212, com. lable B >< 206, list T >

< 214s labeled common statement > :: = COMMON < 21_, common unit B >

60. < 213, common unit B >

_Number of times the syntactical unit can 'be repested is unspecified.

T

1971011830-069

?

6_

< 21_ > :: = , < 203, arr.

216, list D > :: = < 203, array >T • < 21_ >

217, dimension statement > :: --DIMENSION < 216, list D >

1
|

i

I

1971011830-070

I

SAMPLE _ AND OUTPI_ PROGRAMS i

A sample program in RTPL and the resultJng F_rtran real-time

program has been included to illustrate the use of RTPL,,

: i._ .

• _5

' 1

63

1971011830-071

/

64

PQOGRAM YOn (INPUT=2OI,OUTPUT=20|)
, P RFGIN nECLARATIVE

P INTFGRATE(PSI,PSIDT,PSIOtPSID,PSIDD,PSIDO)
" R CHANGF(PSIO,PSIOO+A+B+_)

R CHANDE(ANSWFRI,ANSWFR2}

P CHANGE INTFGER(N)
P CHANGE LOGIC (FLAG,FLAG2)
P ADC(FOQCEI.-.I,.06)

R AOC(FOPCF2,+].333,.OOI)
P DAC(PSI,.],-.3)

_ _ DAC SKIP (S)
R PAC(PSID,.7,+O)

T R RECORD(T,PSI,PSID,PSIDD+A,R)
i P BEGIN MACPO ROOTS(D_F,F+U+V)
- POS = ,F.

; NFG = ,F.
$$V$$=$$F$$*$$F$$-4.*$$D$$*$$F$$ -
$$U$$=1.

_ IF(SIGN($$11$$+$$V$$I.GT.O) POS=,T.

I IF(SIG_:($$U$$,$$V$$).LT.O) NEG=,T,

IF(POS) _U$S=(-$SFSS+SORT($$VS$))/I2,e$$O$$)
IF(POS) $$V$S=(-$$ESS-SORT($$V$$))/(2.eSSD$$)
IF(NEO) $$U$$=0

+_ IF(NEO) $$V $$=0
R END MACRO ROOTS
P END DECLARATIVE

n BEGIN INITIALIZE

C'e** SECTION D. CONSTANTS AND INITIAL PARAMETERS
_;,

1 FORMAT (IHISX4HTIMEtITX3HPSI,I_XTHPSI DOT,I4XgHRSI D
'_ I DOT,12X,iHA,2OXIH_)

., "-, _ FORMAT (6_1,8)
3 FORMAT (FIO.2)

N=2
" A = S._OIRT5

R = 2.$7397
C = 8.3333

.,, O = .12
, PSIO = 0.2

PSIDO = 0.0
TO = 0.0 |

R END INITIALIZE,
:i R BEGIN RESET

C*eee SECTION E, INITIALIZATION OF INTEGRALS

ic, I
I

1971011830-072

!

67

T = Tn

R CALL _ACPO PhOTS (A,P,C,ANSWF_],AHSWEP_)
R BEGIN Hot.n

' C**e* SECTION F, HOL_ CONTROL

R BEGIN OPEOATE

C**** SECTION G. OPERATF LOOP !

PSIDT = PSID i

PSIDO = -A*SIGN(I,0,PSID)ipSID**N - ReSIN(PSI) + FOR i

ICEI - FORCF2*SIN(PSI)
TABLE(5) = T
T_BLE(_) = PSI _

R END RESET HOLD
; R DISCONTINUE OPERATE
; R CO_JTINt;E OPERATE
: R END OPERATE ---

R BEGIN PRINT ._

C***_ SECTION H, PRINT CONTROL

WRITE (MF,I)

R DISCONTINUE PRINT,.
WRITE(MF,2) TtPSI,PSID,PSIDD_A,R. "

R CONTINUE PRINT
R END PRINT
P BEGIN nPTION

Co*** SECTION I, READ CONTROL

READ 3,A

END OPTION
END

1971011830-073

66

OIPIRRPP_

PROGRAM YDD (INPUT=_OI,OUTPUT=_01)
COMMON /INTCOMM /T,H,INT,NEOoISCHEME,DERINT(2,2) i

COMMON /INTINTP/ INTERN (5. 2)
EQUIVALENCE (DERINT(],|)_PSI),(DERINT(2,I),PSID)t(DF !

]RINT(I,?),PSID},(DERINT(2,_)tPSIDD) i
Ch_MON /MASKS/TMASK(_O),FMASK(60)
LOGICAl_ LOGIC
DIMENSION TARLE(B),INTEG(1)tLOGIC(?)

LOGICAl. VA_CHNG,FSI4_FSIS,FS|6_ENARLE_MSI
EOUIV*LENCF (TARLF(I)_PSIO)t(TABLE(2),PSIOO)t(TABLE(

13),A),(TARLE(4),R)4(TARLE(7)tANSWE_|),(TARLE(R)tANSW
2EP2)

EQUIV_LENCF (INTEG(]),N)
EQUIVAI_ENCF (LOGIC(|),FLAG)_ILOGICI2),FLAG2)
DIMENSION ADC(BO),DAC(]80)
COMMON /INOUT/ QEMOTF,IDIS(I6)tODIS(I6)tTYIO(4)
DIMENSION IVARBUF(5)

CALL RESET (90001S,gOOOTS)
CALL HOLD (qooo2stqO007S)
CALL OPERATE(9OOO3StqOOO8S,9OOO9StO00|OS)
CALL PRINT(900IIS_9001_S,900|3S,900|6S)
CALL OPTION(90015S,900]6S)
CALL _EADOUT(6tT,PSIoPSIDtPSIDOtAtR) ,.
CALL RTOUTF(MF)
CALL INOUT(ADCt_tDAC,7)
CALL OATARLX(TARLEtB,INTEGtItLOGIC,2tARCt2oDACtTtIDI

IS,I_,ODIS,16)
CALL XDSPLAY(IDIS,ODIS,VARCHNG, ITYPE,IVARBUF,FSI6}
CALL NM2IB(6LTYPTPE)
ISCHEMF=I
NEQ=2
H=32./]024.

FLAG=.F.
i

C_**_ SECTION O. CONSTANTS AND INITIAL PARAMETERS

1 FORMAT (lHISX_HTIMFt17X3HPSItl_X7HP_I DOT,I_XqHPSI O

I DOT,I_X,IHA,_OXIHR)
FORMAT (6E_1,8)

3 FORMAT (FIO.2) -_-
N =
A = S.POlRT5 *

C = 8._333

D = ,IP ,.
PSIO : 0._

..... _SIDO = 0.0

1971011830-074

/

6?

_ C_LL P_ADY
_ go00| CQNT THIJE

TNT=n
.: pSI=PSTO

PSIn=PSIDO

, C**** SECTION F. INITIALIZATION OF INTEGRALS

T T = TO
POS = .F.

r
. NEG = .F.

i ANSWER?=g_R_4.Ao C

: ANSWERI=].7
!

IF(SIGN(ANSWEPI.ANSWER2).GT.O.) POS=.T,
| IF(SIGN(ANSWER].ANSWER2).LT.O.) NEG=.T.

IF(POS) ANSWER|=(-B,SORT(ANSWER2))/(2.*A)
; IF(POS) ANSWER2=(-B-SORT(ANSWE_2))/(2,eA)

IF(NEG) ANSWER]=O,
IF(NEG) ANSWER2=O,

90002 CONTINUE

C_*e° SECTION F, HOLD CONTROL

98003 CONTINUE

FORCE! = (ADC(])-.])*.06
F_RCE2 = (ADC(2)*.333)_.001
FSI4=IDIS.AND.FMASK(46)
FS]S=IDIS,AND,FMASK(47)
FS]6=IDIS.AND.FMASK(4R)
MS]=IDIS.AND°FMASK(]7)

qO004 CONTINUE

C ***_ SECTION G. OPERATE LOOP

PSIDT = PSID
ICE] - FO_CF2OSIN(PSI)
PSIDD = -A_SI(_N(I,O,PSTO)ePSID_IN - B'SIN(PSI) • FOR
TABLE(R) = T
TABLE(_) = PSI
IF(INT.GT.I_ GO T_ _0006
DAC(l) = (PSIw. I)-.3
DAC(7) = (PSID*,7)*D
IF(FLAG) GO TO gO005

IF(I_I_.AN_.TmASK(2?)) CALL SCANNER(32)
CALL DSPLAY
IF(MSI) GO Tn qnO07
IF(VARCHNG) CALL TYPVAP

IF(ENARLF,AND°FSI5) CAL.L TYPEVAR
FNARLE=,NOT°FS]R

IF(FS]_.AND.(IDIS.AND.TMASK(|4))) CALL TYPEVAR .:_

.... _ ._,_.
,,_._._.....,.-,._.:_g _,-._

1971011830-075

68

90007 RFTIJPN
90nOR PFTUON
9000q CONTINUE

CALL RFCORD(3?)
9000A CONTINIJE

, CALL IGRATF1
TF([NT,GT,]) GO TO 90004
FLAG=°T,

_. GO TO 90004
98005 FLAG=.F.
90010 RETURN
90011 CONTINUE

C**_* SECTION H. PPINT CONTROL

WRITE (MF,])
90012 CONTINUE

_- WRITE(MF,2) T,PSItPSIO,PSIDD,A,B
; 90013 PETURN

90014 RETURN
90015 CONTINUE

_ C**** SECTION I, OrA_ rONTROL

READ 3,A
90016 RETURN

_ END

Y

L

I

1971011830-076

APPENDIX F

Z
_' PREPROCESSORSUBROUTINES
%"

.t

The following subroutines are used by the preprocessor in develop-

_ ing a real-time Fortran program. Their name and function are listed.
z-

Name Function

BLA to remove blanks from a string of Fortran code in Hollerith

:' form and write the modified code in Temp, the temporary

_ output file.

CCON to parse a string of input code to determine if the string

•_ contains an integer constant, floating point constant.

C_VD to parse a string of input code to determine if the

string is an End card.
'i

CMACRO to fetch a macro from the macro definition file, parse the

operands of the macro call, replace formal parameters

with actual parameters, clean up the Fortran code, and

_ write the expanded macro on Temp.
/

: COMPARE to compare two strings, one with one character per word and

the other with lO characters per word.

CPRONAM to parse a string of input code to determine if the string

is a program name card.

CRECORD to write the subroutine calls to RECORD.

CSMINT to parse a string of input code to determine if the string

" contains a small integer constant between one and 16

exclusively.

69

1971011830-077

i

!,

t

70

i Name Function

i CVAR to parse a stringof input code to determineif the string

containsa variable,a real variable,an integervarl-

• able,an array,a real array or an integerarray in

Fortran.

DERE_J to write equivalencestatementsto equateintegrated

variablesto the array in commonINTCOMM(D_RIh_2array).

°_ INTEr; to write equivalence statements to equate integer varl-

ables that will be displ_yed to the display integer

array(B?2_Garray).

LOGES; to write equivalencestatementsto equatelogicalvari-

ables thatwill be displayedto the displaylogical

array (LOGICarray).

PACK to removeblanks from a stringof Fortran code.

PARSED to parseFortran declarativestatements.

The followingsubroutinesare used to parse operandsof RTPL
J

statements. For these subroutines the name and corresponding RTPL

statementswill be listed.

Subroutine RTPL Statements
• ,|

_ SUBI DAC

SUB2 ADC

' SUB4 CHANGE

, am6 R_O_D

'_ SUB7 SCHEME,ADC SKIP,D_ SKIP,TIME I_Z_AL

1971011830-078

7]

\
. Subroutine RTPL Statements

SUB8 ADC NAME, DAC NAME, CHANGE NAME, REAL T]I_IEFILE,

CHANGE LOGIC NAME, INTEGRATIONKu'FFER,CHANGE
J

INS_ER_AME.

SNOB12 SCANNER, RECORDING FREG_JENCY

SUB13 INTEGRATE

SUBI9 CHANGE LOGIC

L SUBI9 CHANGE INTEO]_

S'u"B20 SET INTEGRATION I
SUB22 DISPLAY VARIABLES

SUB29 MODES AND DISCBETES

1971011830-079

/

APPENDIX G

FLOW DIAGRAM OF THE CVAR SUBROUTINE

i#

_ The CVAR subroutine is used to detect all variables. Flags and _

parameters are passed to the subroutine to indicate if the routine is

to try to detect:

a variable,

a real variable,

an integer variable,

. an array,

a real array, or

,_ an integer array

using the syntax of RTPL or Fortran depending whether the preprocessor

is parsing a RTPL or Fortran statement. This Subroutine is called with -i ,y"'_'

i a pointer indicating where to start operating on the input string. The

subroutine takes the first character and performs a series of tests on

it to determine what it is. The routine operates on each consecutive

characters until a valid name is detected. Once a variable or an array

, name is located, the subroutine checks the declarative tables that the

Fortran parser generated. If a valid variable or array is detected, the

answer is set true and the Fortran symbol i_ passed to the program that

called CVAR. 'ENCODE' and 'DECODE' are Fortran statements that perform

a transfer and modification of the contents of memory to another loca-

tion in memory. They are used form words out of a string of characters

(ENCODE) and to convert a symbol into a string of characters.

72
.

1971011830-080

!

73

_ The following flow chart uses the following symbols:

,_ Symbol Meaning9:

'l•,- Fortran code;j

C

_i _ Test, usually an if statement or a larger

group of code, bottom point is a false
transfer, and either side points are
true transfers.

DO loop

_ _ CONTinUE

) Starting or endingpoint of a subroutine

Q Continuation point in flow chart The
_ symbol, al, indicates how to connect

a point on one l_e to apoint on
! another l_ge.

1971011830-081

,h
_f

' DECLARATIVES
J

" FORMAT

_i STATEMENTS

t

IX)1 CK_RACTERINDEX =
STARTING POINT, ENDING

"_ POINT

SET AB EQUAL TO
M ITH S_MBOL IN

o:_ M INPUT STRING
i t

I_CREMHT
CHARACTER
COUNT

o

1971011830-082

!

",,,,t !

1!

" DETECTED .m

ER COUNTLESS THAN
MAXIMUMNUMBER

b°

WRITE
DIAGNOSTIC !

/

#.

_ IS

NOT THE FIRST
• CHARACT_

t

• i2.

;' ABA
L_rT_R

. j

• _ THE PROPNt

i LETT_ TO BEGIN ,,
THIS TYPE - •°

WORD
SET FLAG TO

I VARIABI2_

_ IS
_ AN ARRAY

BEING TESTED
_ FOR

!

1971011830-084

77

1971011830-085

78

ENCODE LIST INTO A
_ WORD TO FORM I FOR-

TRAN VARIABLE NAME

IS

TYPED
vARIABLE FIAG

i FALSE

&

1
IS

VARIABLE'S
NAM_IN _-
ATI_ TABLES

i

•-;IL

1971011830-086

t

_P

1971011830-087

/

I

1971011830-088

." 81

\

READ
_, NEXT
._ CARD

IS IT AN
RTPL STATEMENT

IT A COH-

COMMENT
IN TEMP

FORTRAN

1971011830-089

I
_ 82

LOOKING
FORA_

W_E
NO DELIMIT_S
EXPECTED

1971011830-090

! ,._ • o

' 1
IS

ITNOTA
CONTINUATION

. " CARD

I

IT LESS

THAN 19TH CON-
TINUATION

• J

F WRITE

ERROR
MESSAGE

:_ RESET
_ STARTING
; POINT_

" (i)--

1971011830-091

/

_: BIBLIOGRAPHY

i. Ec_hardt, Dave E., Jr. : Description of Langley Research Center
Computer Complex and Special Features for BeaA-Time Simu].ation

_ Applications. Paper presented at the 2astern Simulation Council

_ Meeting, Hampton, Virginia, September 26, 1968. i_

: 2. Cleveland, Jeff I., II: Description of Software Features for
Program Control. Paper presented at the Eastern Simulation

Council Meeting, Hampton, Virginia, September 26, 1968.

3. Cleveland, Jeff I., II: A Real-Time Digital Simulation Supervisor.

Thesis for George Washington University, April 1970.

4. Crawford, Daniel J.; and Cleveland, Jeff I., II: Real-Time Digital
Simclation Cooperative Programlng Guide. Internal manual for 1

National Aeronautics and Space Administration, Langley Research
Center Real-Time Simulation Facility, February 1969.

_. Rablnowltz, I.: Report Algorithmic Language Fortran II. Communi-cations of the ACM, vol. 5, no. 6 , June 1962, pp. 327-337.

6. Burkhardt, W. H. : Metalanguage and Syntax Specification. Communi-

i cations of the ACM, vol. 8, no. 5 , May 196_, pp. 304-30_.

7. Hoffberg, Susan S. 1 and C_:_ldstein, Max: A Syntax-Directed Fort;ran"'
Statemen" Checker. Courant Institute of Mathematical Sciences,

Jantmry1968.

8. Brever, Hans: Dictionary for Computer Languages. London Academic
Press Inc., LTD., 1966.

>

84

$

1971011830-092

